4.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization.

1. Mitosis

All cells reproduce by division

"Binary Fission" in Prokaryotes

The cell cycle

Major stages of a eukaryotic cell's life cycle.

M

Μ

G

G₀

 \mathbf{G}_{2}

How eukaryotic cells accomplish the processes of growth, repair, and reproduction.

The cell cycle

Interphase: nondividing life (most of the cell cycle). $G1 \rightarrow S \rightarrow G2$

M-phase: cell division.

The behavior of chromosomes during the cell cycle allows for heritability

Mitosis

Produces two genetically identical "daughter" cells.

Chromosomes duplicated in S phase condense, align, and separate.

Prophase

Chromatin condenses into chromosomes

Nucleolus disappears

Prometaphase

Nuclear membrane breaks down

Kinetochore microtubules invade nuclear space, and attach to kinetochores

Polar microtubules push against each other, moving centrosomes apart

Astral microtubules

Metaphase

Chromosomes line up along metaphase plate (imaginary plane)

Anaphase

Chromosomes break at centromeres, and sister chromatids move to opposite ends of the cell

Sister chromatids

Telophase and **Cytokinesis**

Nuclear membrane reforms, nucleoli reappear, chromosomes unwind into chromatin

Myosin II and actin filament ring contract to cleave cell in two

Contractile ring

Video Animation

<u>http://www.youtube.com/watch?v=cvlpmmvB</u> <u>m4</u> 4.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization.

2. Cell Cycle Control

Control of Cell Division

Mitosis is under strict cellular control. Cells must pass through a series of "checkpoints" to be allowed to divide.

If internal conditions are not appropriate, cell division will normally be prevented.

Cancer: Uncontrolled cell division.

Internal control of division

Cells control cell division by controlling the presence or absence of proteins that allow for cell division.

Ex. Mitosis Promotion Factor

External Control of Division

Progression through the cell cycle can be triggered by external signals.

Ex. Platelet Derived Growth Factor

4.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization.

3. Meiosis

Meiosis

Produces four genetically unique gametes with half of the normal amount of genetic material Required for sexual reproduction Daughter Nuclei

Meiosis has 2 rounds of cell division with no S-phase between them

Crossing Over

Occurs during prophase 1.

Homologous pairs of chromosomes exchange DNA.

Produce genetically unique chromosomes

Independent Assortment

During metaphase 1, homologous pairs line up still attached.

The alignment of one pair has no effect on any other pair.

Meiosis, Sex, and Variation

The events of meiosis and the sexual life cycle generate a tremendous amount of variation. Every organism that is produced is genetically unique.

A Little Math

- Variation due to **independent assortment**: 2n (n = number of homologous pairs) = ~8,000,000 possible combinations in humans
- Variation due to **fertilization**: (2n) x (2n) = ~70,000,000,000,000 combinations in humans.
- Variation due to crossing over: